Hydrol. Earth Syst. Sci. Discuss., 8, 9299–9321, 2011 www.hydrol-earth-syst-sci-discuss.net/8/9299/2011/ doi:10.5194/hessd-8-9299-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers

C.-T. Wang $^{\!\!1,2}\!,$ H.-D. Yeh $^{\!\!2}\!,$ and C.-S. Tsai^2

¹Taiwan Branch, MWH Americas Inc., Taipei, Taiwan ²Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan

Received: 25 August 2011 – Accepted: 20 September 2011 – Published: 18 October 2011

Correspondence to: H.-D. Yeh (hdyeh@mail.nctu.edu.tw)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

The drawdown solution has been widely used to analyze pumping test data for the determination of aguifer parameters when coupled with an optimization scheme. The solution can also be used to predict the drawdown due to pumping and design the dewatering system. The drawdown solution for flow toward a finite-radius well with a 5 skin zone in a confined aguifer of infinite extent in radial direction had been developed before. To our best knowledge, the drawdown solution in confined aguifers of finite extent so far has never before been presented in the groundwater literature. This article presents a mathematical model for describing the drawdown distribution due to a constant-flux pumping from a finite-radius well with a skin zone in confined aguifers of 10 finite extent. The analytical solution of the model is developed by applying the methods of Laplace transforms and Bromwich contour integral. This solution can be used to investigate the effects of finite boundary and conductivity ratio on the drawdown distribution. In addition, the inverse relationship between Laplace- and time-domain variables is used to develop the large time solution which can reduce to the Thiem 15 solution if there is no skin zone.

1 Introduction

The famous Theis solution (1935) was first introduced in the groundwater literature to describe the transient drawdown distribution induced by a constant pumping at a well
 of infinitesimal well radius in a homogeneous and isotropic confined aquifer of infinite extent. The radius of a well is in fact not zero in the real-world problems. It is well recognized that the solution developed based on the assumption of zero well radius can not give accurate drawdown predictions near the wellbore. Van Everdingen and Hurst (1949) developed the transient pressure solutions for the constant flow in finite and infinite confined reservoirs with considering the effect of well radius but neglecting the skin effect. Note that the term skin effect is used to reflect the increase or de-

With the introduction of functions commonly occurring in groundwater flow problems, Hantush (1964) gave an analytical solution and two approximate solutions for a constant pumping in confined aquifers with a finite well radius. Chen (1984) gave a short review on the use of the remote finite boundary condition in the groundwater litera-

- ⁵ ture. He proposed a modified Theis equation for describing the drawdown distribution in a confined aquifer of finite extent and gave a time criterion for the use of the Theis equation to predict drawdown in a finite aquifer. Wang and Yeh (2008) gave an extensive review on the relationship between the transient solution and steady-state solution for constant-flux and constant-head tests in aquifers of finite extent and infinite extent.
- ¹⁰ They mentioned that the drawdown solution of the finite aquifer, rather than the infinite aquifer, can reduce to the Thiem solution when the time becomes large enough.

A positive skin is referred to a zone near the well having lower permeability than the original formation due to well construction. On the other hand, a negative skin is a zone has higher permeability than other part of aquifer formation. With considering

- a finite-thickness skin or patchy zone, Butler (1988) and Barker and Herbert (1988) developed Laplace-domain solutions for the transient drawdown induced by a constant pumping without considering the effect of the well radius in confined aquifers. No-vakowski (1989) mentioned in a study that the thickness of the skin zone may range from a few millimeters to several meters. He presented a Laplace domain drawdown
- solution for a confined aquifer under a constant pumping with considering the effects of skin zone and wellbore storage. Butler and Liu (1993) presented a Laplace-domain solution for drawdown due to a point-source pumping in a uniform aquifer with an arbitrarily located disk of anomalous properties. In addition, they also gave a large-time solution based on the inverse relationship between the Laplace variable and time vari-
- able. Yeh et al. (2003) presented an analytical drawdown solution for the pumping test in an infinite confined aquifer by taking into account the effects of the well storage and the finite-thickness skin. They mentioned that the effect of skin zone is negligible in short and large periods of pumping time. Perina and Lee (2006) developed a general well function in Laplace domain for constant pumping in a confined, leaky, or

unconfined aquifer of infinite extent with a partially penetration well, finite-thickness skin. Yet, they adopted an approach such as a finite difference method to discretize the well screen for handling non-uniform wellbore flux problems.

- The existing drawdown solutions for radial two-zone confined aquifers of infinite extent under constant-flux pumping were all developed in Laplace domain except the one given by Yeh et al. (2003) which was a time domain solution. Yeh et al.'s solution (2003) is in terms of an improper integral integrating from zero to infinity and its integrand comprises a singularity at the origin. In addition, the integrand is an oscillatory function with many product terms of the Bessel functions of the first and second kinds of zero and first orders. The numerical calculation of their solution is therefore
- time-consuming and very difficult to achieve accurate results. To avoid such numerical difficulties, we therefore propose an alternative analytical solution developed from a mathematical model similar to that of Yeh et al. (2003), except that the aquifer is of horizontally finite extent. The solution of the model is also developed by applying the
- ¹⁵ methods of Laplace transforms and Bromwich contour integral. The integration of the contour integral in Yeh et al. (2003) results in a single branch point with no singularity at zero of the complex variable. Thus, a branch cut along the negative real axis of the contour should be chosen and thus a closed contour is produced. Such a procedure finally results in a complicated solution presented in Yeh et al. (2003). On the other
- hand, the integration of the contour integral arisen from the Laplace domain solution in our model has a simple pole at the origin and finite number of poles at other locations. The residue theorem is therefore adapted to obtain the time domain solutions for the skin zone or formation zone. These two solutions are in terms of a logarithmic function plus a summation term, rather than an integral, with the Bessel functions of the first
- and second kinds of orders zero and first. The solutions are much easier to calculate than those of Yeh et al. (2003) indeed involving a singularity in the integral. In addition, large-time solutions in simpler forms are also developed by employing the relationship of small Laplace-domain variable *p* versus large time-domain variable *t*, hereinafter referred to SPLT (Yeh and Wang, 2007), to the Laplace-domain solution.

2 Mathematical model

5

15

2.1 Mathematical statement

The assumptions involved in the development of the mathematical model are: (1) the confined aquifer is homogeneous, isotropic, and of finite extent in radial direction; (2) the well fully penetrates the aquifer and has a finite well radius; (3) a skin zone is present around the pumping well as shown in Fig. 1; (4) the well discharge rate is maintained constant through out the entire pumping test.

The governing equations describing the drawdown distribution s(r,t) in the skin zone and formation zone are, respectively,

$${}_{10} \quad \frac{\partial^2 s_1}{\partial r^2} + \frac{1}{r} \frac{\partial s_1}{\partial r} = \frac{S_1}{T_1} \frac{\partial s_1}{\partial t} \qquad r_w \le r < r_1 \tag{1}$$

$$\frac{\partial^2 s_2}{\partial r^2} + \frac{1}{r} \frac{\partial s_2}{\partial r} = \frac{S_2}{T_2} \frac{\partial s_2}{\partial t} \qquad r_1 \le r < R$$

where subscripts 1 and 2 express the skin zone and the formation zone, respectively, r is the radial distance from the central line of the pumping well, r_w is the well radius, r_1 is the outer radius of the skin zone, R is the distance from the central line of the well to the outer boundary, t is the pumping time, S is the storage coefficient, and T is the transmissivity.

Prior to pumping, there is no drawdown over the area that will be influenced by the test. Thus, the initial conditions for skin zone and formation can be written as

 $s_1(r,0) = s_2(r,0) = 0$

In addition, the drawdown at R is also considered to be zero. The flux along the wellbore is maintained at a constant rate Q. Thus, the outer and inner boundary conditions can be expressed, respectively, as

 $s_2(R,t)=0$

(2)

(3)

(4)

CC I

$$\left.\frac{ds_1}{dr}\right|_{r=r_{\rm w}} = \frac{-Q}{2\pi r_{\rm w} T_1}$$

The continuity requirements for the drawdown and flux at the interface between the skin zone and formation zone are, respectively,

$$s_1(r_1,t) = s_2(r_1,t) \tag{6}$$

$$T_1 \frac{\partial s_1(r_1, t)}{\partial r} = T_2 \frac{\partial s_2(r_1, t)}{\partial r}$$
(7)

Laplace-domain solution 2.2

The solutions of Eqs. (1) and (2) subject to Eqs. (3)-(7) can be easily found using the method of Laplace transforms. The results are

$$\bar{s}_{1} = \frac{-Q}{4\pi T_{2}} \left[\frac{1}{\rho} \frac{2T_{2}}{r_{w} T_{1} q_{1}} \frac{\Phi_{1} I_{0}(q_{1}r) - \Phi_{2} K_{0}(q_{1}r)}{\Phi_{1} I_{1}(q_{1}r_{w}) + \Phi_{2} K_{1}(q_{1}r_{w})} \right]$$

$$\bar{s}_{2} = \frac{-Q}{4\pi T_{2}} \left\{ \frac{1}{\rho} \frac{2T_{2}}{r_{w} T_{1} q_{1}} \frac{\Phi_{1} I_{0}(q_{1}r_{1}) - \Phi_{2} K_{0}(q_{1}r_{1})}{[\Phi_{1} I_{1}(q_{1}r_{w}) + \Phi_{2} K_{1}(q_{1}r_{w})]} \frac{1}{\varphi} \right\}$$
(8)
(9)

5

with

$$\Phi_1 = \phi \sqrt{\frac{S_2 T_2}{S_1 T_1}} K_0(q_1 r_1) K_0(q_2 r_1) - K_1(q_1 r_1) K_0(q_2 r_1)$$

$$\Phi_2 = \phi \sqrt{\frac{S_2 T_2}{S_1 T_1}} I_0(q_1 r_1) K_0(q_2 r_1) + I_1(q_1 r_1) K_0(q_2 r_1)$$

$$\phi = \frac{I_0(q_2R)K_1(q_2r_1) + I_1(q_2r_1)K_0(q_2R)}{I_0(q_2R)K_0(q_2r_1) - I_0(q_2r_1)K_0(q_2R)}$$
9304

Discussion Paper **HESSD** 8, 9299-9321, 2011 Transient drawdown solution for a constant pumping **Discussion** Paper test C.-T. Wang et al. **Title Page** Introduction Abstract **Discussion** Paper Conclusions References **Tables Figures** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(5)

(9)

(10)

(11)

(12)

$$\varphi = \frac{I_0(q_2R)K_0(q_2r) - I_0(q_2r)K_0(q_2R)}{I_0(q_2R)K_0(q_2r_1) - I_0(q_2r_1)K_0(q_2R)}$$

(13)

(15)

(16)

Note that *p* is the Laplace variable, $q_1 = \sqrt{pS_1/T_1}$, $q_2 = \sqrt{pS_2/T_2}$, I_0 and K_0 are the modified Bessel functions of the first and second kinds of order zero, respectively, and I_1 and K_1 are the modified Bessel functions of the first and second kinds of order first, respectively.

The values of γ and ω can reduce to $K_1(q_2r_1)/K_0(q_2r_1)$ and $K_0(q_2r)/K_0(q_2r_1)$, respectively, when *R* approaches infinity. Equations (8) and (9) are then equivalent to the solutions presented in Yeh et al. (2003, p. 750) as

$$\bar{s}_{1} = \frac{Q}{4\pi T_{2}} \left[\frac{1}{\rho} \frac{2T_{2}}{r_{w} T_{1} q_{1}} \frac{\psi_{2} K_{0}(q_{1}r) + \psi_{1} I_{0}(q_{1}r)}{\psi_{2} K_{1}(q_{1}r_{w}) - \psi_{1} I_{1}(q_{1}r_{w})} \right]$$
(14)

$${}_{10} \quad \bar{S}_2 = \frac{Q}{4\pi T_2} \left[\frac{1}{p} \frac{2T_2}{r_w T_1 q_1} \frac{(\psi_2 K_0(q_1 r_1) + \psi_1 I_0(q_1 r_1))}{(\psi_2 K_1(q_1 r_w) - \psi_1 I_1(q_1 r_w))} \frac{K_0(q_2 r)}{K_0(q_2 r_1)} \right]$$

with

$$\psi_1 = K_1(q_1r_1)K_0(q_2r_1) - \sqrt{\frac{S_2T_2}{S_1T_1}}K_0(q_1r_1)K_1(q_2r_1)$$

$$\psi_2 = I_1(q_1r_1)K_0(q_2r_1) + \sqrt{\frac{S_2T_2}{S_1T_1}}I_0(q_1r_1)K_1(q_2r_1)$$
(17)

2.3 Time-domain solution

¹⁵ The transient drawdown solution in time domain can be obtained by applying the Bromwich contour integral (Carslaw and Jaeger, 1959, p. 332) to the Laplace domain

 $\left.\frac{\alpha_n(J_1(\alpha_n r_{\mathsf{w}})Y_0(\alpha_n r) - Y_1(\alpha_n r_{\mathsf{w}})J_0(\alpha_n r))}{\zeta_n^2 \left[B_n^2 + \left(\zeta(B_n C_n + A_n D_n) + \zeta A_n B_n/\alpha_n\right)/r_1 + \zeta^2 A_n^2\right] - \alpha_n^2}\right\}$

distribution in skin and formation zones is, respectively,

 $s_{1} = \frac{Q}{2\pi T_{1}} \left\{ \ln \frac{r_{1}}{r} + \frac{T_{1}}{T_{2}} \ln \frac{R}{r_{1}} - \frac{\pi}{r_{w}} \sum_{n=1}^{\infty} \exp\left(-\frac{T_{1}}{S_{1}} \alpha_{n}^{2} t\right) \right\}$

₅ and

$$S_{2} = \frac{Q}{2\pi T_{2}} \left\{ \ln \frac{R}{r} - \frac{\pi}{r_{w}} \sum_{n=1}^{\infty} \exp\left(-\frac{T_{1}}{S_{1}}\alpha_{n}^{2}t\right) \\ \frac{\alpha_{n}(J_{1}(\alpha_{n}r_{w})Y_{0}(\alpha_{n}r_{1}) - Y_{1}(\alpha_{n}r_{1})J_{0}(\alpha_{n}r_{w})) \cdot (Y_{0}(\xi\alpha_{n}R)J_{0}(\xi\alpha_{n}r) - Y_{0}(\xi\alpha_{n}r)J_{0}(\xi\alpha_{n}R)))}{[\zeta_{n}^{2}B_{n}[B_{n}^{2} + \zeta(B_{n}C_{n} + A_{n}D_{n})/r_{1} + \zeta A_{n}B_{n}/\alpha_{n} + \zeta^{2}A_{n}^{2}] - \alpha_{n}^{2}]} \right\}$$

with

$$\zeta_n = \frac{-\alpha_n J_1(\alpha_n r_w)}{-\zeta A_n J_0(\alpha_n r) - B_n J_1(\alpha_n r)}$$

$$A_n = \left[J_1(\xi \alpha_n r_1) Y_0(\xi \alpha_n R) - J_0(\xi \alpha_n R) Y_1(\xi \alpha_n r_1) \right]$$
(20)
(21)

solution. Detailed development is shown in Appendix A and the result for the drawdown

$$B_n = J_0(\xi \alpha_n R) Y_0(\xi \alpha_n r_1) - J_0(\xi \alpha_n r_1) Y_0(\xi \alpha_n R)$$

$$C_n = -\xi R[J_1(\xi \alpha_n r_1)Y_1(\xi \alpha_n R) - J_1(\xi \alpha_n R)Y_1(\xi \alpha_n r_1)] - \xi r_1 B_n - \frac{A_n}{\alpha_n}$$

$$D_n = \xi R[J_1(\xi \alpha_n R) Y_0(\xi \alpha_n r_1) - J_0(\xi \alpha_n r_1) Y_1(\xi \alpha_n R)] - \xi r_1 A_n$$

Discussion Paper **HESSD** 8, 9299-9321, 2011 Transient drawdown solution for a constant pumping **Discussion** Paper test C.-T. Wang et al. **Title Page** Introduction Abstract **Discussion** Paper Conclusions References **Tables Figures** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(18)

(19)

(22)

(23)

(24)

where J_0 and Y_0 are the Bessel functions of the first and second kinds of order zero, respectively, J_1 and Y_1 are the Bessel functions of the first and second kinds of order first, respectively, $\xi = \sqrt{T_1 S_2 / T_2 S_1}$, $\zeta = \sqrt{S_2 T_2 / S_1 T_1}$, and $\pm \alpha_n$ are the roots of

$$\begin{bmatrix} \alpha J_1(\xi \alpha r_1) Y_0(\xi \alpha R) - \alpha J_0(\xi \alpha R) Y_1(\xi \alpha r_1) \end{bmatrix} \cdot \zeta \begin{bmatrix} Y_1(\alpha r_w) J_0(\alpha r_1) - Y_0(\alpha r_1) J_1(\alpha r_w) \end{bmatrix} + \\ \begin{bmatrix} J_0(\xi \alpha r_1) Y_0(\xi \alpha R) - J_0(\xi \alpha R) Y_0(\xi \alpha r_1) \end{bmatrix} \cdot [\alpha Y_1(\alpha r_1) J_1(\alpha r_w) - \alpha J_1(\alpha r_1) Y_1(\alpha r_w)] = 0$$
(25)

When ignoring the presence of skin zone, Eq. (19) can reduces to 5

$$s = \frac{Q}{2\pi T} \left\{ \ln \frac{R}{r} - \frac{\pi}{r_w} \sum_{n=1}^{\infty} \exp\left(-\frac{T}{S} \alpha_n^2 t\right) \cdot \frac{(J_1(\alpha_n r_w) Y_0(\alpha_n r) - Y_1(\alpha_n r_w) J_0(\alpha_n r))}{\alpha_n [J_1^2(\alpha_n r_w) - J_0^2(\alpha_n R)] / J_0^2(\alpha_n R)} \right\}$$
(26)

where α_n are the roots of $J_1(\alpha r_w)Y_0(\alpha R) - Y_1(\alpha r_w)J_0(\alpha R) = 0$. Note that Eq. (26) is exactly the same as the equation presented in Wang and Yeh (2008, Eq. 11). Additionally, the steady-state solution can be obtained from Eqs. (18) and (19) in the limit of time approaching infinity.

15

Large-time solution 2.4

The drawdown solution for two-zone confined aguifers of finite-extent at large times can be obtained by applying the SPLT technique and L'Hospital rule to Eqs. (8) and (9). Some limits of the Bessel functions with small arguments are given as $I_0(x) \sim 1$, $I_1(x) \sim x/2$, $K_0(x) \sim -\ln(x)$, and $K_1(x) \sim 1/x$ when x approaches zero (Abramowitz and Stegun, 1979, p. 375). The Laplace-domain drawdown distribution in skin zone and formation zone for small p can then be obtained, respectively, as

$$\overline{s_1}(r,\rho) = \frac{Q}{2\pi T_1 \rho} \left(\ln \frac{r_1}{r} + \frac{T_1}{T_2} \ln \frac{R}{r_1} \right)$$

$$\overline{s_2}(r,p) = \frac{Q}{2\pi T_2 p} \ln \frac{R}{r}$$

Discussion Paper HESSD 8, 9299-9321, 2011 Transient drawdown solution for a constant pumping Discussion Paper test C.-T. Wang et al. **Title Page** Abstract Introduction Discussion Paper Conclusions References **Figures Tables** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(27)

(28)

Accordingly, the large-time drawdown solutions can then be obtained by taking the inverse Laplace transform to Eqs. (27) and (28) as

$$s_{1}(r,t) = \frac{Q}{2\pi T_{1}} \left(\ln \frac{r_{1}}{r} + \frac{T_{1}}{T_{2}} \ln \frac{R}{r_{1}} \right)$$
(29)
$$s_{2}(r,t) = \frac{Q}{2\pi T_{2}} \ln \frac{R}{r}$$
(30)

⁵ The time invariant Eqs. (29) and (30) can also be obtained by applying the method of Tauberian theory (Sneddon, 1972) to Eqs. (8) and (9). This result indicates that the drawdown solution can reach its steady-state solution in confined aquifers of finite extent as declared in Wang and Yeh (2008). In addition, both Eqs. (29) and (30) can reduce to the Thiem solution if there is no skin zone, i.e. r_1 equals r_w and T_1 equals T_2 .

10 2.5 Dimensionless solution

15

S

Dimensionless variables are introduced as follows: $\kappa = T_2/T_1$, $\gamma = S_2/S_1$, $\tau = T_2t/S_2r_w^2$, $\rho = r/r_w$, $\rho_1 = r_1/r_w$, $\rho_R = R/r_w$, and $s_D = s(4\pi T_2)/Q$ where κ represents conductivity ratio, γ represents the ratio of storage coefficient, ρ represents dimensionless distance, ρ_1 represents dimensionless skin thickness, ρ_R represents dimensionless distance of the outer boundary, and s_D represents the transient distribution of dimensionless drawdown. The drawdown solutions in Eqs. (18) and (19) then becomes

$$= 2\kappa \left\{ \ln \frac{\rho_1}{\rho} + \frac{1}{\kappa} \ln \frac{\rho_R}{\rho_1} - \pi \sum_{n=1}^{\infty} \exp\left(-\frac{\gamma}{\kappa} \beta_n^2 \tau\right) \cdot \frac{\omega_n (J_1(\beta_n) Y_0(\beta_n \rho) - Y_1(\beta_n) J_0(\beta_n \rho))}{\zeta_{Dn}^2 \left[b_n^2 + \left(\zeta (b_n c_n + a_n d_n) + \zeta a_n b_n / \beta_n\right) / \rho_1 + \zeta^2 a_n^2 \right] - \beta_n^2} \right\}$$
(31)

Discussion Paper HESSD 8, 9299-9321, 2011 Transient drawdown solution for a constant pumping Discussion Paper test C.-T. Wang et al. **Title Page** Abstract Introduction Discussion Paper Conclusions References **Tables Figures** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

$$\begin{split} s_{2} &= 2\kappa \left\{ \ln \frac{\rho_{R}}{\rho} - \pi \sum_{n=1}^{\infty} \exp\left(-\frac{\gamma}{\kappa} \beta_{n}^{2} \tau\right) \\ & \frac{\beta_{n}(J_{1}(\beta_{n})Y_{0}(\beta_{n}\rho_{1}) - Y_{1}(\beta_{n}\rho_{1})J_{0}(\beta_{n})) \cdot (Y_{0}(\xi\beta_{n}\rho_{R})J_{0}(\xi\beta_{n}\rho) - Y_{0}(\xi\beta_{n}\rho)J_{0}(\xi\beta_{n}\rho_{R}))}{[\zeta_{Dn}^{2}[b_{n}^{2} + (\xi(b_{n}c_{n} + a_{n}d_{n}) + \xia_{n}b_{n}/\beta_{n})/\rho_{1} + \xi^{2}a_{n}^{2}] - \beta_{n}^{2}]} \right\} \end{split}$$

where $\beta_n = r_w \alpha_n$ are the roots of

 $\begin{bmatrix} \beta J_1(\xi\beta\rho_1)Y_0(\xi\beta\rho_R) - \beta J_0(\xi\beta\rho_R)Y_1(\xi\beta\rho_1) \end{bmatrix} \cdot \xi \begin{bmatrix} Y_1(\beta)J_0(\beta\rho_1) - Y_0(\beta\rho_1)J_1(\beta) \end{bmatrix} + \\ \begin{bmatrix} J_0(\xi\beta\rho_1)Y_0(\xi\beta\rho_R) - J_0(\xi\beta\rho_R)Y_0(\xi\beta\rho_1) \end{bmatrix} \cdot \begin{bmatrix} \beta Y_1(\beta\rho_1)J_1(\beta) - \beta J_1(\beta\rho_1)Y_1(\beta) \end{bmatrix} = 0$ (33)

and

$$\varsigma_{Dn} = \frac{-\beta_n J_1(\beta_n)}{-\zeta a_n J_0(\beta_n \rho_1) - b_n J_1(\beta_n \rho_1)}$$
(34)

$$a_n = J_1(\xi\beta_n\rho_1)Y_0(\xi\beta_n\rho_R) - J_0(\xi\beta_n\rho_R)Y_1(\xi\beta_n\rho_1)$$

$$b_n = J_0(\xi \beta_n \rho_R) Y_0(\xi \beta_n \rho_1) - J_0(\xi \beta_n \rho_1) Y_0(\xi \beta_n \rho_R)$$
(36)

10

$$c_{n} = -\xi \rho_{R} [J_{1}(\xi \beta_{n} \rho_{1}) Y_{1}(\xi \beta_{n} \rho_{R}) - J_{1}(\xi \beta_{n} \rho_{R}) Y_{1}(\xi \beta_{n} \rho_{1})] - \xi \rho_{1} b_{n} - \frac{a_{n}}{\beta_{n}}$$
(37)

$$d_{n} = \xi \rho_{R} [J_{1}(\xi \beta_{n} \rho_{R}) Y_{0}(\xi \beta_{n} \rho_{1}) - J_{0}(\xi \beta_{n} \rho_{1}) Y_{1}(\xi \beta_{n} \rho_{R})] - \xi \rho_{1} a_{n}$$
(38)

The numerical calculations for Eqs. (31) and (32) are achieved by finding the roots of Eq. (33) first using Newton's method and then adding the summation term for n up to 100. Generally, the results have accuracy to the fifth decimal place.

(32)

(35)

3 Advantages and applications of the present solution

3.1 Advantages over the existing solutions

The analytical solution developed herein has the following two advantages over Yeh et al.'s solution (2003). First, the present solutions can give the same predicted drawdowns as Yeh et al.' solution (2003) if the outer boundary distance in the present solution is very large. In other words, the solutions presented in Yeh et al. (2003) can be considered as a special case of the present solution. Second, the transient drawdown solution in Yeh et al. (2003) is given in terms of an improper integral integrating from zero to infinity and its integrand has a singularity at the origin. Due to the presence of singular point, the solution is very difficult to accurately calculate. In contrast, the present solution is composed of infinite series and can be easily calculated with accuracy to fifth decimal.

3.2 Potential applications

Due to the presence of skin zone, an aquifer system is characterized by five parameters, i.e. the outer radius of the skin zone and the transmissivity and storage coefficient for each of the skin and aquifer zones. Once the parameters are known, the presented solution can be used to predict the spatial or temporal drawdown distributions in both the skin and formation zones and explore the physical insight of the constantflux test in two-zone aquifer systems. On the other hand, those five parameters can be

- determined via the data analyses if the parameter values are not available. The determination of unknown parameters is in fact a subject of inverse problems. Type-curve approach is common for the parameter estimation. However, it is almost impossible to develop type-curves for the parameter estimation because the unknown parameters of two-zone aquifers are too many. Alternative ways in determining those five unknown parameters of the parameter estimation is common for the parameter of a subject of the parameter of two-zone aquifers are too many.
- parameters are to use the presented solution in conjunction with the algorithm of extended Kalman filter (e.g. Leng and Yeh, 2003; Yeh and Huang, 2005) or a heuristic

optimization approach such as simulated annealing (e.g. Lin and Yeh, 2005; Yeh et al., 2007).

The present solution can also be used to verify recently developed numerical codes for predicting the drawdown distribution in two-zone aquifer systems. Generally, the sensitivity analysis (Liou and Yeh, 1997) can be performed to assess the impacts of parameter uncertainty on the predicted drawdown. If the predicted drawdown is very sensitive to a specific parameter, a small change in that parameter will result in a large change in the predicted drawdown. On the contrary, the change in a less sensitive parameter has little influence on the predicted result, reflecting a fact that a less sensitive parameter is difficult to be accurately estimated. With the present solution, one can easily perform the sensitivity analysis for two-zone confined aquifer systems to assess the overall responsiveness and sensitivity to targeted parameters (e.g. Huang and Yeh, 2007).

4 Results and discussion

- ¹⁵ Since the Yeh et al. (2003) have investigated the effects of the parameters, such as the skin type, skin thickness and well radius, on the drawdown distribution for two-zone aquifer systems, this study therefore concentrates on the effects of finite boundary and conductivity ratio on the drawdown distribution. Figures 2 and 3 depict the dimensionless predicted drawdowns at $\rho = 1$ (at wellbore) and 10 (i.e. in the formation zone),
- ²⁰ respectively, when $\rho_1 = 3$ for $\kappa = 0.1$, 1, and 10. Note that κ less than 1 denotes for the case of a negative skin and greater than 1 for the case of a positive skin. Figure 2 shows the comparison of the wellbore drawdown in the aquifer of finite-extent to that in the one of infinite extent. Both drawdown curves match very well before $\tau < 100$. However, the curves gradually deviate from one another after $\tau > 100$, indicating that the
- solution of finite aquifers can no longer be used to approximate the solution of infinite aquifer at large times because of the importance of boundary effect on the drawdown distribution. Moreover, the drawdown solution of finite aquifers tends to be stable when

the time becomes very large. On the other hand, the wellbore drawdown in infinite aquifers continuously increases with dimensionless time. Figure 2 also demonstrates the effect of skin property on the wellbore drawdown distribution. The aquifer with a positive skin has larger wellbore drawdowns than the one with a negative skin at the same pumping rate. Figure 3 presents the drawdown distributions at $\rho = 10$ for $\rho_1 = 3$ and $\kappa = 0.1$, 1, and 10. It reveals that the drawdown in an aquifer with a negative skin is larger than that in the one with a positive skin. In other words, the effect of skin property on the drawdown distribution zone is opposed to that at the wellbore. The difference in drawdown distribution between aquifers with $\kappa = 1$ and 10 at $\rho = 1$ shown in Fig. 2 is significantly larger than those with $\kappa = 0.1$ and 1 at $\rho = 1$ (Fig. 2) and those with $\kappa = 1$ and 10 at $\rho = 10$ shown in Fig. 3, indicating that the two-zone aquifer system is rather sensitive to the pumping in positive skin cases.

5 Conclusions

A mathematical model has been developed to describe the drawdown distribution for a pumping test performed in a two-zone confined aquifer of finite extent. The Laplacedomain solution of the model for skin zone and formation zone is obtained by applying the method of Laplace transforms. The analytical solution (in time domain) is then developed by the Bromwich contour integral method. The drawdown distribution predicted from the analytical solution shows that the dimensionless drawdown distribution

- in a finite aquifer is significantly different from that in an infinite one at large pumping times. In other word, the drawdown solution of finite aquifer is applicable to predict that of an infinite aquifer only under the condition that the time is not large enough. In addition, the two-zone aquifer system is rather sensitive to the pumping in positive skin cases.
- ²⁵ A large-time drawdown solution is also developed in this article based on the inverse relationship of Laplace- and time-domain variables. Surprisingly, this large-time solution is exactly the same as the steady-state solution, indicating that the solution of

finite two-zone aquifers can reach its steady-state solution at large times. In addition, the large-time solution has been shown to reduce to the Thiem solution if neglecting the presence of skin zone.

Appendix A

5

15

Derivation of Eqs. (18) and (19)

The drawdown solution in time domain, denoted as s(t) obtained by applying the Bromwich integral method (Carslaw and Jaeger, 1959) to the Laplace domain solution $\bar{s}(p)$ is expressed as

10
$$s(t) = L^{-1}\left\{\overline{s}(p)\right\} = \frac{1}{2\pi i} \int_{r-i\infty}^{r+i\infty} e^{pt} \overline{s}(p) dp$$
(A1)

where *i* is an imaginary unit and r_e is a real constant which is so large that all of the real parts of the poles are smaller than it. The graph of the Bromwich integral contains a close contour with a semicircle and a straight line parallel to the imaginary axis. According to Jordan's Lemma, the integration for the semicircle tends to be zero when it radius approaches infinity. Based on the residue theorem, Eq. (A1) can be written as

$$s(t) = \sum_{n=1}^{\infty} \operatorname{Res}\left\{e^{pt}s(p);g_n\right\}$$
(A2)

where p_n are the poles in the complex plane. There are infinite singularities in s(p) and obviously one pole at p = 0.

Introducing the following two variables

²⁰
$$\Delta = q_1 [\Phi_1 I_1 (q_1 r_w) + \Phi_2 K_1 (q_1 r_w)]$$

$$\Psi = \left[\Phi_1 I_0(q_1 r) - \Phi_2 K_0(q_1 r) \right]$$

Discussion Paper HESSD 8, 9299-9321, 2011 **Transient drawdown** solution for a constant pumping **Discussion** Paper test C.-T. Wang et al. **Title Page** Introduction Abstract **Discussion** Paper Conclusions References **Tables Figures** 14 Back Close **Discussion** Paper Full Screen / Esc **Printer-friendly Version** Interactive Discussion

(A3)

(A4)

Equation (8) can then be expressed as

$$\bar{s}_{1} = \frac{-Q}{4\pi T_{2}} \frac{2T_{2}}{r_{w}T_{1}} \left[\frac{1}{\rho} \frac{\Psi(\rho)}{\Delta(\rho)} \right]$$
(A5)

Let $\Delta = 0$, the roots α_n in $p = p_n = (-T_1 \alpha_n^2)/S_1$ can be then determined form Eq. (A3). Substituting $p = p_n = (-T_1 \alpha_n^2)/S_1$ into Eq. (A3) yields Eq. (25). From the following formula (Kreyszig, 1999), the residue of the pole at p = 0 is

$$\operatorname{Res}\{e^{\rho t}s(\rho);0\} = \lim_{\rho \to 0} s(\rho) \, e^{\rho t}(\rho - 0) \tag{A6}$$

Substituting Eq. (A5) into Eq. (A6) and applying L'Hopital's rule results in

$$\operatorname{Res}\{e^{\rho t}s(\rho);0\} = \frac{Q}{2\pi T_1} \left[\ln \frac{r_1}{r} + \frac{T_1}{T_2} \ln \frac{R}{r_1} \right]$$
(A7)

The other residues at the simple pole $p = p_n = -T_1 \alpha_n^2 / S_1$ are expressed as

10
$$\operatorname{Res}\{e^{pt}s(p);p_n\} = \lim_{p \to p_n} s(p) e^{pt}(p-p_n)$$
 (A8)

Applying L'Hopital's rule to Eq. (A8), the denominator term inside the brackets of Eq. (A5) becomes

$$\left[\rho \frac{d\Delta}{d\rho} \right]_{\rho = -T_1 \alpha_n^2 / S_1} = \left[\frac{1}{2} q \frac{d\Delta}{dq} \right]_{q_1 = i\alpha_n, q_2 = i\kappa\alpha_n} = \frac{1}{2} q_1 \left\{ q_1 \left[\Phi_1' I_1(q_1 r_w) + \Phi_2' K_1(q_1 r_w) \right] + r_w q_1 \left[\Phi_1 I_0(q_1 r_w) - \Phi_2 K_0(q_1 r_w) \right] \right\}$$
(A9)

where the variables Φ_1 and Φ_2 are defined in Eqs. (10) and (11), respectively, and Φ_1 and Φ_2 are the first differentiations of Φ_1 and Φ_2 , respectively.

To simplify Eq. (A8), a variable ζ_n is assumed based on Eq. (A3) and $\Delta = 0$:

$$\begin{aligned} \zeta_n &= \frac{q_1 I_1(q_1 r_w) K_0(\xi q_1 r_1)}{-\Phi_2 \left[(I_0 (\xi q_1 R) K_0(\xi q_1 r_1) - I_0(\xi q_1 r_1) K_0(\xi q_1 R) \right]} \\ &= \frac{q_1 K_1(q_1 r_w) K_0(\xi q_1 r_1)}{\Phi_1 \left[(I_0 (\xi q_1 R) K_0(\xi q_1 r_1) - I_0(\xi q_1 r_1) K_0(\xi q_1 R) \right]} \end{aligned}$$

Two recurrence formulas (Carslaw and Jaeger, 1959, p. 490) are adopted to eliminate the imaginary unit in Eq. (8) as follows:

$$K_{\nu}\left(ze^{\pm\frac{1}{2}\pi i}\right) = \pm\frac{1}{2}\pi i e^{\pm\frac{1}{2}\nu\pi i} \left[-J_{\nu}(z) \pm iY_{\nu}(z)\right]$$
(A11)

and

$$I_{v}\left(ze^{\pm\frac{1}{2}\pi i}\right) = e^{\pm\frac{1}{2}v\pi i}J_{v}(z)$$
(A12)

Substituting Eqs. (A11) and (A12) into Eq. (A10) yields

$${}^{10} \quad \frac{-\alpha_n J_1(\alpha_n r_w)}{-\zeta A_n J_0(\alpha_n r_1) - B_n J_1(\alpha_n r_1)} = \frac{\alpha_n Y_1(\alpha_n r_w)}{\zeta A_n Y_0(\alpha_n r_1) + B_n Y_1(\alpha_n r_1)} = \zeta_n$$
(A13)

The result of substituting Eq. (A13) into Eq. (A9) is

$$\begin{bmatrix} \rho \frac{d\Lambda}{d\rho} \end{bmatrix}_{\rho = -T_1 \alpha_n^2 / S_1} = \begin{bmatrix} \frac{1}{2} q \frac{d\Lambda}{dq} \end{bmatrix}_{q_1 = i\alpha_n, q_2 = i\kappa\alpha_n} = \frac{1}{2\zeta_n} \left\{ \zeta_n^2 \begin{bmatrix} B_n^2 + \left(\zeta (B_n C_n + A_n D_n) + \zeta A_n B_n / \alpha_n \right) / r_1 + \zeta^2 A_n^2 \end{bmatrix} - \alpha_n^2 \right\}$$
(A14)

where the constants appeared on the right-hand side of Eq. (A14) are defined in Eqs. (20)–(24). Similarly, the numerator of Eq. (A5) can also be obtained as

$$\Psi = \frac{\pi \alpha_n}{2\varsigma_n} \left[J_1(\alpha_n r_w) Y_0(\alpha_n r) - Y_1(\alpha_n r_w) J_0(\alpha_n r) \right]$$
(A15)

(A10)

)

The residues at the poles $p = p_n = -T_1 \alpha_n^2 / S_1$ are

$$\operatorname{Res}\{e^{pt}s(p);p_{n}\} = \frac{-Q}{2\pi r_{w}T_{1}} \sum_{n=1}^{\infty} \exp\left(\frac{-\alpha_{n}^{2}tT_{1}}{S_{1}}\right) \\ \frac{\alpha_{n}(J_{1}(\alpha_{n}r_{w})Y_{0}(\alpha_{n}r) - Y_{1}(\alpha_{n}r_{w})J_{0}(\alpha_{n}r))}{\xi_{n}^{2} \left[(\zeta A_{n})^{2} + B_{n}^{2} + \zeta\left((B_{n}C_{n} + A_{n}D_{n}) + A_{n}B_{n}/\alpha_{n}\right)/r_{1}\right] - \alpha_{n}}\right\}$$
(A16)

Therefore, Eq. (A2) can be expressed as

5
$$h(t) = (\operatorname{Res}\{e^{\rho t}s(\rho);0\} + \operatorname{Res}\{e^{\rho t}s(\rho);\rho_n\})$$
 (A17)

Finally, the solution for the drawdown distribution in the skin zone can then be obtained as Eq. (18). The solution for the drawdown distribution in the formation zone can also be obtained in a similar way as Eq. (19).

Acknowledgements. This research is partially supported by the Taiwan National Science Council under the contract numbers NSC 99-NU-E-009-001, NSC 99-2221-E-009-062-MY3, and NSC 100-2221-E-009-106.

References

10

- Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions, Dover publications, New York, 1970.
- ¹⁵ Baker, J. A. and Herbert, R.: Pumping test in patchy aquifer, Ground Water, 20, 150–155, 1988.
 - Barry D. A., Parlange, J. Y., and Li, L.: Approximation for the exponential integral (Theis well function), J. Hydrol., 227, 287–291, 2000.

Batu, V.: Aquifer Hydraulics, John Wiley & Sons, New York, 1998.

Butler Jr., J. J.: Pumping tests in nonuniform aquifers-The radially symmetric case, J. Hydrol., 101, 15–30, 1988.

- Butler Jr., J. J. and Liu, W. Z.: Pumping tests in nonuniform aquifers: The radially asymmetric case, Water Resour. Res., 29, 259–269, 1993.
- Carslaw, H. S. and Jaeger, J. C.: Conduction of Heat in Solids, 2nd edn., Oxford University Press, London, 1959.
- ⁵ Chen, C. S.: A reinvestigation of the analytical solution for drawdown distributions in a finite confined aquifer, Water Resour. Res., 20, 1466–1468, doi:10.1029/WR020i010p01466, 1984.
 Hantush, M. S.: Hydraulics of wells, in: Advances in Hydroscience, Academic Press, New York, 1964.

Huang, Y. C. and Yeh, H. D.: The use of sensitivity analysis in on-line aquifer parameter estimation, J. Hydrol., 335, 406–418, 2007.

10

30

- Ingersoll, L. R., Adler, F. T. W., Plass, H. J., and Ingersoll, A. G.: Theory of earth heat exchangers for the heat pump, HPAC Engineering, 113–122, 1950.
- Ingersoll, L. R., Zobel, O. J., and Ingersoll, A. C.: Heat conduction with engineering, geological, and other applications, 2nd edn., Madison, University Wisconsin Press, 1954.
- ¹⁵ Kreyszig, E.: Advanced engineering mathematics, John Wiley & Sons Inc., New York, 1999. Leng, C. H. and Yeh, H. D.: Aquifer parameter identification using the extended Kalman filter, Water Resour. Res., 39, 1062, doi:10.1029/2001WR000840, 2003.
 - Lin, Y. C. and Yeh, H. D.: Trihalomethane species forecast using optimization method: genetic algorithm and simulated annealing, J. Comput. Civil Eng., 19, 248–257, 2005.
- Liou, T. S. and Yeh, H. D.: Conditional expectation for evaluation of risk groundwater flow and solute transport: one-dimensional analysis, J. Hydrol., 199, 378–402, 1997.
 - Novakowski, K. S.: A Composite Analytical Model for Analysis of Pumping Tests Affected by Well Bore Storage and Finite Thickness Skin, Water Resour. Res., 25, 1937–1946, 1989.
- Perina, T. and Lee, T. C.: General well function for pumping from a confined, leaky, or unconfined aquifer, J. Hydrol., 317, 239–260, 2006.
 - Prodanoff, J. H. A., Mansur, W. J., and Mascarenhas, F. C. B.: Numerical evaluation of Theis and Hantush-Jacob well functions, J. Hydrol., 318, 173–183, 2006.

Sneddon, I. N.: The Use of Integral Transforms, New York, McGraw-Hill, 1972.

- Streltsova, T. D.: Well Testing in Heterogeneous Formations, John Wiley and Sons, Inc., New York, 45–49, 1988.
- Theis, C. V.: The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Trans American Geophysical Union, 16, 519–524, 1935.

Conclusions
References

Tables
Figures

I
I

I
I

I
I

Back
Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

- Tseng, P. H. and Lee, T. C.: Numerical evaluation of exponential integral: Theis well function approximation, J. Hydrol., 281, 129–146, 1998.
- Van Everdingen, A. F. and Hurst, W.: The application of the Laplace transformation to flow problems in reservoirs, Pet. Trans. AIME, 186, 305–324, 1949.
- ⁵ Wang, C. T. and Yeh, H. D.: Obtaining the steady-state drawdown solutions of constant-head and constant-flux tests, Hydrol. Process., 22, 3456–3461, 2008.
 - Yeh, H. D. and Huang, Y. C.: Parameter estimation for leaky aquifers using the extended Kalman filter and considering model and data measurement uncertainties, J. Hydrol., 302, 28–45, 2005.
- ¹⁰ Yeh, H. D. and Wang, C. T.: Large-time solutions for groundwater flow problems using the relationship of small *p* versus large *t*, Water Resour. Res., 43, W06502, doi:10.1029/2006WR005472, 2007.

Yeh, H. D., Chang, T. H., and Lin, Y. C.: Groundwater contaminant source identification by a hybrid heuristic approach, Water Resour. Res., 43, W09420, doi:10.1029/2005WR004731, 2007.

Yeh, H. D., Yang, S. Y., and Peng, H. Y.: A new closed-form solution for a radial two-layer drawdown equation for groundwater under constant-flux pumping in a finite-radius well, Adv. Water Resour., 26, 747–757, 2003.

15

9318

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 9299–9321, 2011

Transient drawdown solution for a constant pumping test

C.-T. Wang et al.

Title Page

Abstract

Introduction

Fig. 1. Schematic diagram of the pumping test in a finite-extent confined aquifer.

Printer-friendly Version

Interactive Discussion

Figures

Close

Printer-friendly Version

Interactive Discussion