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Abstract

The drawdown solution has been widely used to analyze pumping test data for the
determination of aquifer parameters when coupled with an optimization scheme. The
solution can also be used to predict the drawdown due to pumping and design the
dewatering system. The drawdown solution for flow toward a finite-radius well with a5

skin zone in a confined aquifer of infinite extent in radial direction had been developed
before. To our best knowledge, the drawdown solution in confined aquifers of finite
extent so far has never before been presented in the groundwater literature. This ar-
ticle presents a mathematical model for describing the drawdown distribution due to a
constant-flux pumping from a finite-radius well with a skin zone in confined aquifers of10

finite extent. The analytical solution of the model is developed by applying the meth-
ods of Laplace transforms and Bromwich contour integral. This solution can be used
to investigate the effects of finite boundary and conductivity ratio on the drawdown
distribution. In addition, the inverse relationship between Laplace- and time-domain
variables is used to develop the large time solution which can reduce to the Thiem15

solution if there is no skin zone.

1 Introduction

The famous Theis solution (1935) was first introduced in the groundwater literature to
describe the transient drawdown distribution induced by a constant pumping at a well
of infinitesimal well radius in a homogeneous and isotropic confined aquifer of infinite20

extent. The radius of a well is in fact not zero in the real-world problems. It is well
recognized that the solution developed based on the assumption of zero well radius
can not give accurate drawdown predictions near the wellbore. Van Everdingen and
Hurst (1949) developed the transient pressure solutions for the constant flow in finite
and infinite confined reservoirs with considering the effect of well radius but neglecting25

the skin effect. Note that the term skin effect is used to reflect the increase or de-
crease of hydraulic conductivity caused by drilling practices in a region near the well.
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With the introduction of functions commonly occurring in groundwater flow problems,
Hantush (1964) gave an analytical solution and two approximate solutions for a con-
stant pumping in confined aquifers with a finite well radius. Chen (1984) gave a short
review on the use of the remote finite boundary condition in the groundwater litera-
ture. He proposed a modified Theis equation for describing the drawdown distribution5

in a confined aquifer of finite extent and gave a time criterion for the use of the Theis
equation to predict drawdown in a finite aquifer. Wang and Yeh (2008) gave an exten-
sive review on the relationship between the transient solution and steady-state solution
for constant-flux and constant-head tests in aquifers of finite extent and infinite extent.
They mentioned that the drawdown solution of the finite aquifer, rather than the infinite10

aquifer, can reduce to the Thiem solution when the time becomes large enough.
A positive skin is referred to a zone near the well having lower permeability than

the original formation due to well construction. On the other hand, a negative skin is
a zone has higher permeability than other part of aquifer formation. With considering
a finite-thickness skin or patchy zone, Butler (1988) and Barker and Herbert (1988)15

developed Laplace-domain solutions for the transient drawdown induced by a constant
pumping without considering the effect of the well radius in confined aquifers. No-
vakowski (1989) mentioned in a study that the thickness of the skin zone may range
from a few millimeters to several meters. He presented a Laplace domain drawdown
solution for a confined aquifer under a constant pumping with considering the effects20

of skin zone and wellbore storage. Butler and Liu (1993) presented a Laplace-domain
solution for drawdown due to a point-source pumping in a uniform aquifer with an ar-
bitrarily located disk of anomalous properties. In addition, they also gave a large-time
solution based on the inverse relationship between the Laplace variable and time vari-
able. Yeh et al. (2003) presented an analytical drawdown solution for the pumping25

test in an infinite confined aquifer by taking into account the effects of the well storage
and the finite-thickness skin. They mentioned that the effect of skin zone is negligi-
ble in short and large periods of pumping time. Perina and Lee (2006) developed a
general well function in Laplace domain for constant pumping in a confined, leaky, or
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unconfined aquifer of infinite extent with a partially penetration well, finite-thickness
skin. Yet, they adopted an approach such as a finite difference method to discretize the
well screen for handling non-uniform wellbore flux problems.

The existing drawdown solutions for radial two-zone confined aquifers of infinite ex-
tent under constant-flux pumping were all developed in Laplace domain except the5

one given by Yeh et al. (2003) which was a time domain solution. Yeh et al.’s solu-
tion (2003) is in terms of an improper integral integrating from zero to infinity and its
integrand comprises a singularity at the origin. In addition, the integrand is an oscilla-
tory function with many product terms of the Bessel functions of the first and second
kinds of zero and first orders. The numerical calculation of their solution is therefore10

time-consuming and very difficult to achieve accurate results. To avoid such numeri-
cal difficulties, we therefore propose an alternative analytical solution developed from
a mathematical model similar to that of Yeh et al. (2003), except that the aquifer is of
horizontally finite extent. The solution of the model is also developed by applying the
methods of Laplace transforms and Bromwich contour integral. The integration of the15

contour integral in Yeh et al. (2003) results in a single branch point with no singularity
at zero of the complex variable. Thus, a branch cut along the negative real axis of the
contour should be chosen and thus a closed contour is produced. Such a procedure
finally results in a complicated solution presented in Yeh et al. (2003). On the other
hand, the integration of the contour integral arisen from the Laplace domain solution in20

our model has a simple pole at the origin and finite number of poles at other locations.
The residue theorem is therefore adapted to obtain the time domain solutions for the
skin zone or formation zone. These two solutions are in terms of a logarithmic function
plus a summation term, rather than an integral, with the Bessel functions of the first
and second kinds of orders zero and first. The solutions are much easier to calculate25

than those of Yeh et al. (2003) indeed involving a singularity in the integral. In addition,
large-time solutions in simpler forms are also developed by employing the relationship
of small Laplace-domain variable p versus large time-domain variable t, hereinafter
referred to SPLT (Yeh and Wang, 2007), to the Laplace-domain solution.
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2 Mathematical model

2.1 Mathematical statement

The assumptions involved in the development of the mathematical model are: (1) the
confined aquifer is homogeneous, isotropic, and of finite extent in radial direction;
(2) the well fully penetrates the aquifer and has a finite well radius; (3) a skin zone5

is present around the pumping well as shown in Fig. 1; (4) the well discharge rate is
maintained constant through out the entire pumping test.

The governing equations describing the drawdown distribution s(r,t) in the skin zone
and formation zone are, respectively,

∂2s1

∂r2
+

1
r
∂s1

∂r
=
S1

T1

∂s1

∂t
rw ≤ r < r1 (1)10

∂2s2

∂r2
+

1
r
∂s2

∂r
=
S2

T2

∂s2

∂t
r1 ≤ r <R (2)

where subscripts 1 and 2 express the skin zone and the formation zone, respectively,
r is the radial distance from the central line of the pumping well, rw is the well radius,
r1 is the outer radius of the skin zone, R is the distance from the central line of the well
to the outer boundary, t is the pumping time, S is the storage coefficient, and T is the15

transmissivity.
Prior to pumping, there is no drawdown over the area that will be influenced by the

test. Thus, the initial conditions for skin zone and formation can be written as

s1(r,0)= s2(r,0)=0 (3)

In addition, the drawdown at R is also considered to be zero. The flux along the well-20

bore is maintained at a constant rate Q. Thus, the outer and inner boundary conditions
can be expressed, respectively, as

s2(R,t)=0 (4)
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ds1

dr

∣∣∣∣
r=rw

=
−Q

2πrwT1
(5)

The continuity requirements for the drawdown and flux at the interface between the
skin zone and formation zone are, respectively,

s1(r1,t)= s2(r1,t) (6)

T1
∂s1(r1,t)
∂r

= T2
∂s2(r1,t)
∂r

(7)5

2.2 Laplace-domain solution

The solutions of Eqs. (1) and (2) subject to Eqs. (3)–(7) can be easily found using the
method of Laplace transforms. The results are

s̄1 =
−Q

4πT2

[
1
p

2T2

rwT1q1

Φ1I0 (q1r)−Φ2K0 (q1r)

Φ1I1 (q1rw)+Φ2K1 (q1rw)

]
(8)

s̄2 =
−Q

4πT2

{
1
p

2T2

rwT1q1

Φ1I0 (q1r1)−Φ2K0 (q1r1)

[Φ1I1 (q1rw)+Φ2K1 (q1rw)]

1
ϕ

}
(9)10

with

Φ1 =φ

√
S2T2

S1T1
K0 (q1r1)K0 (q2r1)−K1 (q1r1)K0 (q2r1) (10)

Φ2 =φ

√
S2T2

S1T1
I0 (q1r1)K0 (q2r1)+ I1 (q1r1)K0 (q2r1) (11)

φ=
I0 (q2R)K1 (q2r1)+ I1 (q2r1)K0 (q2R)

I0 (q2R)K0 (q2r1)− I0 (q2r1)K0 (q2R)
(12)
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ϕ=
I0 (q2R)K0 (q2r)− I0 (q2r)K0 (q2R)

I0 (q2R)K0 (q2r1)− I0 (q2r1)K0 (q2R)
(13)

Note that p is the Laplace variable, q1 =
√
pS1
/
T1, q2 =

√
pS2
/
T2, I0 and K0 are the

modified Bessel functions of the first and second kinds of order zero, respectively, and
I1 and K1 are the modified Bessel functions of the first and second kinds of order first,
respectively.5

The values of γ and ω can reduce to K1 (q2r1)
/
K0 (q2r1) and K0 (q2r)

/
K0 (q2r1), re-

spectively, when R approaches infinity. Equations (8) and (9) are then equivalent to the
solutions presented in Yeh et al. (2003, p. 750) as

s̄1 =
Q

4πT2

[
1
p

2T2

rwT1q1

ψ2K0 (q1r)+ψ1I0 (q1r)
ψ2K1 (q1rw)−ψ1I1 (q1rw)

]
(14)

s̄2 =
Q

4πT2

[
1
p

2T2

rwT1q1

(ψ2K0 (q1r1)+ψ1I0 (q1r1))

(ψ2K1 (q1rw)−ψ1I1 (q1rw))

K0 (q2r)
K0 (q2r1)

]
(15)10

with

ψ1 =K1 (q1r1)K0 (q2r1)−

√
S2T2

S1T1
K0 (q1r1)K1 (q2r1) (16)

ψ2 = I1 (q1r1)K0 (q2r1)+

√
S2T2

S1T1
I0 (q1r1)K1 (q2r1) (17)

2.3 Time-domain solution

The transient drawdown solution in time domain can be obtained by applying the15

Bromwich contour integral (Carslaw and Jaeger, 1959, p. 332) to the Laplace domain
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solution. Detailed development is shown in Appendix A and the result for the drawdown
distribution in skin and formation zones is, respectively,

s1 =
Q

2πT1

{
ln
r1
r
+
T1

T2
ln
R
r1
− π
rw

∞∑
n=1

exp
(
−
T1

S1
α2
nt
)
·

αn (J1 (αnrw)Y0 (αnr)−Y1 (αnrw)J0 (αnr))

ς2
n

[
B2
n+
(
ζ (BnCn+AnDn)+ζAnBn/αn

)
/r1+ζ2A2

n

]
−α2

n

 (18)

and5

s2 =
Q

2πT2

{
lnRr −

π
rw

∞∑
n=1

exp
(
− T1
S1
α2
nt
)

αn(J1(αnrw)Y0(αnr1)−Y1(αnr1)J0(αnrw))·(Y0(ξαnR)J0(ξαnr)−Y0(ξαnr)J0(ξαnR))

[ς2
nBn[B2

n+ζ (BnCn+AnDn)/r1+ζAnBn/αn+ζ2A2
n]−α2

n]

} (19)

with

ςn =
−αnJ1 (αnrw)

−ζAnJ0 (αnr)−BnJ1 (αnr)
(20)

An =
[
J1 (ξαnr1)Y0 (ξαnR)−J0 (ξαnR)Y1 (ξαnr1)

]
(21)

Bn = J0 (ξαnR)Y0 (ξαnr1)−J0 (ξαnr1)Y0 (ξαnR) (22)10

Cn =−ξR[J1 (ξαnr1)Y1 (ξαnR)−J1 (ξαnR)Y1 (ξαnr1)]−ξr1Bn−
An
αn

(23)

Dn = ξR[J1 (ξαnR)Y0 (ξαnr1)−J0 (ξαnr1)Y1 (ξαnR)]−ξr1An (24)
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where J0 and Y0 are the Bessel functions of the first and second kinds of order zero,
respectively, J1 and Y1 are the Bessel functions of the first and second kinds of order

first, respectively, ξ=
√
T1S2/T2S1, ζ =

√
S2T2/S1T1, and ±αn are the roots of[

αJ1 (ξαr1)Y0 (ξαR)−αJ0 (ξαR)Y1 (ξαr1)
]
·ζ
[
Y1 (αrw)J0 (αr1)−Y0 (αr1)J1 (αrw)

]
+[

J0 (ξαr1)Y0 (ξαR)−J0 (ξαR)Y0 (ξαr1)
]
· [αY1 (αr1)J1 (αrw)−αJ1 (αr1)Y1 (αrw)]=0

(25)

When ignoring the presence of skin zone, Eq. (19) can reduces to5

s= Q
2πT

{
lnRr −

π
rw

∞∑
n=1

exp
(
− T
Sα

2
nt
)
· (J1(αnrw)Y0(αnr)−Y1(αnrw)J0(αnr))

αn[J2
1 (αnrw)−J2

0 (αnR)]/J2
0 (αnR)

}
(26)

where αn are the roots of J1 (αrw)Y0 (αR)−Y1 (αrw)J0 (αR) = 0. Note that Eq. (26) is
exactly the same as the equation presented in Wang and Yeh (2008, Eq. 11). Addi-
tionally, the steady-state solution can be obtained from Eqs. (18) and (19) in the limit
of time approaching infinity.10

2.4 Large-time solution

The drawdown solution for two-zone confined aquifers of finite-extent at large times
can be obtained by applying the SPLT technique and L’Hospital rule to Eqs. (8) and (9).
Some limits of the Bessel functions with small arguments are given as I0(x) ∼ 1,
I1 (x) ∼ x

/
2, K0(x) ∼ −ln(x), and K1(x) ∼ 1/x when x approaches zero (Abramowitz15

and Stegun, 1979, p. 375). The Laplace-domain drawdown distribution in skin zone
and formation zone for small p can then be obtained, respectively, as

s1(r,p)=
Q

2πT1p

(
ln
r1
r
+
T1

T2
ln
R
r1

)
(27)

s2(r,p)=
Q

2πT2p
ln
R
r

(28)
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Accordingly, the large-time drawdown solutions can then be obtained by taking the
inverse Laplace transform to Eqs. (27) and (28) as

s1(r,t)=
Q

2πT1

(
ln
r1
r
+
T1

T2
ln
R
r1

)
(29)

s2(r,t)=
Q

2πT2
ln
R
r

(30)

The time invariant Eqs. (29) and (30) can also be obtained by applying the method5

of Tauberian theory (Sneddon, 1972) to Eqs. (8) and (9). This result indicates that
the drawdown solution can reach its steady-state solution in confined aquifers of finite
extent as declared in Wang and Yeh (2008). In addition, both Eqs. (29) and (30) can
reduce to the Thiem solution if there is no skin zone, i.e. r1 equals rw and T1 equals T2.

2.5 Dimensionless solution10

Dimensionless variables are introduced as follows: κ = T2
/
T1, γ = S2

/
S1, τ =

T2t
/
S2r

2
w, ρ= r

/
rw, ρ1 = r1

/
rw, ρR =R

/
rw, and sD = s(4πT2)

/
Q where κ represents

conductivity ratio, γ represents the ratio of storage coefficient, ρ represents dimen-
sionless distance, ρ1 represents dimensionless skin thickness, ρR represents dimen-
sionless distance of the outer boundary, and sD represents the transient distribution of15

dimensionless drawdown. The drawdown solutions in Eqs. (18) and (19) then becomes

s1 =2κ
{

ln
ρ1

ρ
+

1
κ

ln
ρR
ρ1

−π
∞∑
n=1

exp
(
−γ
κ
β2
nτ
)
·

ωn (J1 (βn)Y0 (βnρ)−Y1 (βn)J0 (βnρ))

ς2
Dn

[
b2
n+
(
ζ (bncn+andn)+ζanbn/βn

)
/ρ1+ζ2a2

n

]
−β2

n

 (31)
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s2 =2κ
{

lnρRρ −π
∞∑
n=1

exp
(
−γ
κβ

2
nτ
)

βn(J1(βn)Y0(βnρ1)−Y1(βnρ1)J0(βn))·(Y0(ξβnρR )J0(ξβnρ)−Y0(ξβnρ)J0(ξβnρR ))

[ς2
Dn[b

2
n+(ζ (bncn+andn)+ζanbn/βn)/ρ1+ζ2a2

n]−β2
n]

} (32)

where βn = rwαn are the roots of[
βJ1 (ξβρ1)Y0 (ξβρR)−βJ0 (ξβρR)Y1 (ξβρ1)

]
·ζ
[
Y1 (β)J0 (βρ1)−Y0 (βρ1)J1 (β)

]
+[

J0 (ξβρ1)Y0 (ξβρR)−J0 (ξβρR)Y0 (ξβρ1)
]
·[βY1 (βρ1)J1 (β)−βJ1 (βρ1)Y1 (β)]=0

(33)

and

ςDn =
−βnJ1 (βn)

−ζanJ0 (βnρ1)−bnJ1 (βnρ1)
(34)5

an = J1 (ξβnρ1)Y0 (ξβnρR)−J0 (ξβnρR)Y1 (ξβnρ1) (35)

bn = J0 (ξβnρR)Y0 (ξβnρ1)−J0 (ξβnρ1)Y0 (ξβnρR) (36)
10

cn =−ξρR [J1 (ξβnρ1)Y1 (ξβnρR)−J1 (ξβnρR)Y1 (ξβnρ1)]−ξρ1bn−
an
βn

(37)

dn = ξρR [J1 (ξβnρR)Y0 (ξβnρ1)−J0 (ξβnρ1)Y1 (ξβnρR)]−ξρ1an (38)

The numerical calculations for Eqs. (31) and (32) are achieved by finding the roots
of Eq. (33) first using Newton’s method and then adding the summation term for n up15

to 100. Generally, the results have accuracy to the fifth decimal place.
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3 Advantages and applications of the present solution

3.1 Advantages over the existing solutions

The analytical solution developed herein has the following two advantages over Yeh
et al.’s solution (2003). First, the present solutions can give the same predicted draw-
downs as Yeh et al.’ solution (2003) if the outer boundary distance in the present so-5

lution is very large. In other words, the solutions presented in Yeh et al. (2003) can
be considered as a special case of the present solution. Second, the transient draw-
down solution in Yeh et al. (2003) is given in terms of an improper integral integrating
from zero to infinity and its integrand has a singularity at the origin. Due to the pres-
ence of singular point, the solution is very difficult to accurately calculate. In contrast,10

the present solution is composed of infinite series and can be easily calculated with
accuracy to fifth decimal.

3.2 Potential applications

Due to the presence of skin zone, an aquifer system is characterized by five parame-
ters, i.e. the outer radius of the skin zone and the transmissivity and storage coefficient15

for each of the skin and aquifer zones. Once the parameters are known, the pre-
sented solution can be used to predict the spatial or temporal drawdown distributions
in both the skin and formation zones and explore the physical insight of the constant-
flux test in two-zone aquifer systems. On the other hand, those five parameters can be
determined via the data analyses if the parameter values are not available. The deter-20

mination of unknown parameters is in fact a subject of inverse problems. Type-curve
approach is common for the parameter estimation. However, it is almost impossible to
develop type-curves for the parameter estimation because the unknown parameters of
two-zone aquifers are too many. Alternative ways in determining those five unknown
parameters are to use the presented solution in conjunction with the algorithm of ex-25

tended Kalman filter (e.g. Leng and Yeh, 2003; Yeh and Huang, 2005) or a heuristic
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optimization approach such as simulated annealing (e.g. Lin and Yeh, 2005; Yeh et al.,
2007).

The present solution can also be used to verify recently developed numerical codes
for predicting the drawdown distribution in two-zone aquifer systems. Generally, the
sensitivity analysis (Liou and Yeh, 1997) can be performed to assess the impacts of5

parameter uncertainty on the predicted drawdown. If the predicted drawdown is very
sensitive to a specific parameter, a small change in that parameter will result in a large
change in the predicted drawdown. On the contrary, the change in a less sensitive pa-
rameter has little influence on the predicted result, reflecting a fact that a less sensitive
parameter is difficult to be accurately estimated. With the present solution, one can10

easily perform the sensitivity analysis for two-zone confined aquifer systems to assess
the overall responsiveness and sensitivity to targeted parameters (e.g. Huang and Yeh,
2007).

4 Results and discussion

Since the Yeh et al. (2003) have investigated the effects of the parameters, such as15

the skin type, skin thickness and well radius, on the drawdown distribution for two-zone
aquifer systems, this study therefore concentrates on the effects of finite boundary and
conductivity ratio on the drawdown distribution. Figures 2 and 3 depict the dimension-
less predicted drawdowns at ρ= 1 (at wellbore) and 10 (i.e. in the formation zone),
respectively, when ρ1 = 3 for κ = 0.1, 1, and 10. Note that κ less than 1 denotes for20

the case of a negative skin and greater than 1 for the case of a positive skin. Figure 2
shows the comparison of the wellbore drawdown in the aquifer of finite-extent to that in
the one of infinite extent. Both drawdown curves match very well before τ <100. How-
ever, the curves gradually deviate from one another after τ > 100, indicating that the
solution of finite aquifers can no longer be used to approximate the solution of infinite25

aquifer at large times because of the importance of boundary effect on the drawdown
distribution. Moreover, the drawdown solution of finite aquifers tends to be stable when
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the time becomes very large. On the other hand, the wellbore drawdown in infinite
aquifers continuously increases with dimensionless time. Figure 2 also demonstrates
the effect of skin property on the wellbore drawdown distribution. The aquifer with a
positive skin has larger wellbore drawdowns than the one with a negative skin at the
same pumping rate. Figure 3 presents the drawdown distributions at ρ= 10 for ρ1 = 35

and κ =0.1, 1, and 10. It reveals that the drawdown in an aquifer with a negative skin is
larger than that in the one with a positive skin. In other words, the effect of skin property
on the drawdown distribution in the formation zone is opposed to that at the wellbore.
The difference in drawdown distribution between aquifers with κ = 1 and 10 at ρ= 1
shown in Fig. 2 is significantly larger than those with κ =0.1 and 1 at ρ=1 (Fig. 2) and10

those with κ = 1 and 10 at ρ= 10 shown in Fig. 3, indicating that the two-zone aquifer
system is rather sensitive to the pumping in positive skin cases.

5 Conclusions

A mathematical model has been developed to describe the drawdown distribution for
a pumping test performed in a two-zone confined aquifer of finite extent. The Laplace-15

domain solution of the model for skin zone and formation zone is obtained by applying
the method of Laplace transforms. The analytical solution (in time domain) is then
developed by the Bromwich contour integral method. The drawdown distribution pre-
dicted from the analytical solution shows that the dimensionless drawdown distribution
in a finite aquifer is significantly different from that in an infinite one at large pumping20

times. In other word, the drawdown solution of finite aquifer is applicable to predict
that of an infinite aquifer only under the condition that the time is not large enough. In
addition, the two-zone aquifer system is rather sensitive to the pumping in positive skin
cases.

A large-time drawdown solution is also developed in this article based on the inverse25

relationship of Laplace- and time-domain variables. Surprisingly, this large-time so-
lution is exactly the same as the steady-state solution, indicating that the solution of
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finite two-zone aquifers can reach its steady-state solution at large times. In addition,
the large-time solution has been shown to reduce to the Thiem solution if neglecting
the presence of skin zone.

Appendix A
5

Derivation of Eqs. (18) and (19)

The drawdown solution in time domain, denoted as s(t) obtained by applying the
Bromwich integral method (Carslaw and Jaeger, 1959) to the Laplace domain solu-
tion s̄(p) is expressed as

s(t)=L−1{s(p)
}
=

1
2πi

∫ r+i∞
r−i∞

epts(p)dp (A1)10

where i is an imaginary unit and re is a real constant which is so large that all of the
real parts of the poles are smaller than it. The graph of the Bromwich integral contains
a close contour with a semicircle and a straight line parallel to the imaginary axis.
According to Jordan’s Lemma, the integration for the semicircle tends to be zero when
it radius approaches infinity. Based on the residue theorem, Eq. (A1) can be written as15

s(t)=
∞∑
n=1

Res
{
epts(p);gn

}
(A2)

where pn are the poles in the complex plane. There are infinite singularities in s(p) and
obviously one pole at p=0.

Introducing the following two variables

∆=q1 [Φ1I1 (q1rw)+Φ2K1 (q1rw)] (A3)20

Ψ=
[
Φ1I0(q1r)−Φ2K0(q1r)

]
(A4)
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Equation (8) can then be expressed as

s̄1 =
−Q

4πT2

2T2

rwT1

[
1
p
Ψ(p)

∆(p)

]
(A5)

Let ∆= 0, the roots αn in p=pn = (−T1α
2
n)/S1 can be then determined form Eq. (A3).

Substituting p=pn = (−T1α
2
n)/S1 into Eq. (A3) yields Eq. (25). From the following for-

mula (Kreyszig, 1999), the residue of the pole at p=0 is5

Res{epts(p);0}= lim
p→0

s(p)ept (p−0) (A6)

Substituting Eq. (A5) into Eq. (A6) and applying L’Hopital’s rule results in

Res{epts(p);0}= Q
2πT1

[
ln
r1
r
+
T1

T2
ln
R
r1

]
(A7)

The other residues at the simple pole p=pn =−T1α
2
n/S1 are expressed as

Res{epts(p);pn}= lim
p→pn

s(p)ept (p−pn) (A8)10

Applying L’Hopital’s rule to Eq. (A8), the denominator term inside the brackets of
Eq. (A5) becomes[
p
d∆
dp

]
p=−T1α

2
n/S1

=
[

1
2
q
d∆
dq

]
q1=iαn,q2=iκαn

=

1
2
q1

{
q1

[
Φ

′

1I1(q1rw)+Φ
′

2K1(q1rw)
]
+rwq1

[
Φ1I0(q1rw)−Φ2K0(q1rw)

]}
(A9)

where the variables Φ1 and Φ2 are defined in Eqs. (10) and (11), respectively, and Φ
′

115

and Φ
′

2 are the first differentiations of Φ1 and Φ2, respectively.
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To simplify Eq. (A8), a variable ςn is assumed based on Eq. (A3) and ∆=0:

ςn =
q1I1(q1rw)K0(ξq1r1)

−Φ2
[
(I0 (ξq1R)K0(ξq1r1)− I0(ξq1r1)K0(ξq1R)

]
=

q1K1(q1rw)K0(ξq1r1)

Φ1
[
(I0 (ξq1R)K0(ξq1r1)− I0(ξq1r1)K0(ξq1R)

] (A10)

Two recurrence formulas (Carslaw and Jaeger, 1959, p. 490) are adopted to eliminate
the imaginary unit in Eq. (8) as follows:5

Kv
(
ze±

1
2πi
)
=±1

2
πie∓

1
2 vπi [−Jv (z)± iYv (z)] (A11)

and

Iv
(
ze±

1
2πi
)
=e±

1
2 vπiJv (z) (A12)

Substituting Eqs. (A11) and (A12) into Eq. (A10) yields

−αnJ1 (αnrw)

−ζAnJ0 (αnr1)−BnJ1 (αnr1)
=

αnY1 (αnrw)

ζAnY0 (αnr1)+BnY1 (αnr1)
= ςn (A13)10

The result of substituting Eq. (A13) into Eq. (A9) is[
pd∆dp

]
p=−T1α

2
n/S1

=
[

1
2q

d∆
dq

]
q1=iαn,q2=iκαn

=

1
2ςn

{
ς2
n

[
B2
n+
(
ζ (BnCn+AnDn)+ζAnBn/αn

)
/r1+ζ

2A2
n

]
−α2

n

} (A14)

where the constants appeared on the right-hand side of Eq. (A14) are defined in
Eqs. (20)–(24). Similarly, the numerator of Eq. (A5) can also be obtained as

Ψ=
παn
2ςn

[
J1(αnrw)Y0(αnr)−Y1(αnrw)J0(αnr)

]
(A15)15
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The residues at the poles p=pn =−T1α
2
n/S1 are

Res{epts(p);pn}=
−Q

2πrwT1

∞∑
n=1

exp

(
−α2

ntT1

S1

)

αn (J1 (αnrw)Y0 (αnr)−Y1 (αnrw)J0 (αnr))

ξ2
n

[
(ζAn)2+B2

n+ζ
(
(BnCn+AnDn)+AnBn/αn

)
/r1
]
−αn

 (A16)

Therefore, Eq. (A2) can be expressed as

h(t)=
(
Res
{
epts(p);0

}
+Res

{
epts(p);pn

})
(A17)5

Finally, the solution for the drawdown distribution in the skin zone can then be ob-
tained as Eq. (18). The solution for the drawdown distribution in the formation zone can
also be obtained in a similar way as Eq. (19).
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Fig. 1. Schematic diagram of the pumping test in a finite-extent confined aquifer.
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 Fig. 2.  The drawdown curves predicted at ρ = 1 (wellbore) for infinite aquifers 
denoted by the solid line and for finite aquifers having the outer boundary distances 
of 20, 30, and 50 represented by the dashed lines with the symbols of circle, diamond, 
and square, respectively, for ρ1 = 3 and κ = 0.1, 1 and 10.    
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Fig. 3.  The drawdown curves predicted at ρ = 10 (in formation zone) for infinite 
aquifers denoted by the solid line and for finite aquifers having the outer boundary 
distances of 20, 30, and 50 represented by the dashed lines with the symbols of circle, 
diamond, and square, respectively, for ρ1 = 3 and κ = 0.1, 1 and 10.    
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Fig. 3. The drawdown curves predicted at ρ=10 (in formation zone) for infinite aquifers denoted
by the solid line and for finite aquifers having the outer boundary distances of 20, 30, and 50
represented by the dashed lines with the symbols of circle, diamond, and square, respectively,
for ρ1 =3 and κ =0.1, 1 and 10.
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